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Introduction 
Grafting of primary embryonic neural tissue has proven that cell replacement therapy is a 
viable approach to the treatment of Parkinson’s disease (PD). The number of successfully 
grafted patients, however, is relatively small: partly due to limited access to suitable 
donor tissue. Alternative sources of donor tissue are urgently needed for cell 
transplantation to become a widely available therapy for PD. Human embryonic stem 
cells (hESCs) have been suggested to be a potential tissue source for cell replacement 
therapy in PD. They can be differentiated into a variety of cell types including neurons 
(Stojkovic et al., 2004). Previous studies have shown that mouse ESC can indeed 
differentiate into dopaminergic (DA) neurons under certain culture conditions (Kawasaki 
et al., 2000; Lee et al., 2000; Wakayama et al., 2001; Kim et al., 2002; Barberi et al., 
2003). Cells derived from mouse ESC can also survive transplantation into rodent brains 
(Kawasaki et al., 2000; Bjorklund et al., 2002; Kim et al., 2002; Morizane et al., 2002; 
Nishimura et al., 2003). When non-differentiated mouse ESCs were grafted into the 
striatum, substantial numbers of mouse ESC differentiated into DA neurons. Many 
grafted rats, however, developed teratomas (Bjorklund et al., 2002). If mouse ESCs were 
differentiated into neurons in vitro prior to transplantation, much higher numbers of DA 
neurons were observed after grafting. There was convincing evidence for functional 
recovery, in terms of improvement of lesion-induced behavioral deficits, without the 
formation of teratomas (Kawasaki et al., 2000; Kim et al., 2002; Barberi et al., 2003). 
Similar results have also been reported when using monkey ESCs (Kawasaki et al., 2002; 
Takagi et al., 2005). Our own results suggest that a risk of teratoma formation inversely 
correlates with the duration of the in vitro differentiation protocol (Brederlau & Correia 
et al., 2006). While the yield of hESC-derived DA neurons is not a limiting factor of 
transplantation success anymore, the major problems associated with the actual 
application of hESC-based therapies for PD are associated with 1) poor survival of 
mature DA neurons and 2) risk of teratoma and tumor formation in the site of 
transplantation. The former is caused by the presence of residual undifferentiated/mitotic 
cells amongst the transplanted cells. 
 
 
Body 
  After establishing a laboratory suitable for hESC research, a continuous colony of 
proliferating hESCs (NIH-approved SA002 (Sahlgrenska 2) hESC line; Heins et al., 
2004) was supported, providing a continuous flow of cell material for extensive 
experimentation. A primary in vitro differentiation protocol developed has relied upon 
epigenetic factors including co-culturing hESCs with stromal-derived cell inducing 
activity (SDIA)-releasing stromal cells (namely, PA6 cells) and supplementation of 
growth/differentiation media with basic fibroblast growth factor (bFGF, FGF2). As 
described in the annual reports, a prolonged in vitro differentiation of hESCs exposed to 
these factors has resulted in the formation of tyrosine hydroxylase-positive (TH+) 
neurons; moreover, dopamine (DA) release was confirmed by High Performance Liquid 
Chromatography (HPLC) analysis, proving the identity of cells (Fig. 1). 
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Figure 1. Human Embryonic Stem Cell (hESCs)-derived cells committed towards dopaminergic 

differentiation pathway by co-culturing with PA6 stromal cells for 16 days. (A) Phase contrast image of 
structures formed in hESC colony. (B) Immunocytochemical analysis of cell composition: tyrosine 

hydroxylase (TH), green; human nuclei marker, red. Scale bars = 100 µm. (C) High Performance Liquid 
Chromatography (HPLC) chromatogram for dopamine release from hESCs co-cultured with PA6-cells for 

20 days (blue line). Pink line represents DA standard. 
 
 
Following evaluation of the yield of TH+ neurons achieved (up to 7.4% in the total 
number of hESC-derived cells), 100,000 viable cells were transplanted to the striatum of 
6-hydroxydopamine (6-OHDA)-lesioned rats, an established animal model of 
Parkinson’s disease. The effectiveness of the lesion was tested by amphetamine-induced 
rotation prior to the grafting procedure. Animals were kept immunosuppressed, and post-
grafting alterations in their behavior were evaluated during 13 weeks using amphetamine-
induced rotation test. No statistically significant improvement in the behavior of the 
grafted rats was detected (though some trend to the improvement was evident in 
particular groups). However, the experiment has resulted in a major finding: it has proven 
that the risk of teratoma formation (originated from the residual undifferentiated cells in 
the mixed cell population) is inversely correlated with the length of in vitro 
differentiation protocol preceding the transplantation procedure. Moreover, the key points 
associated with (i) 100% rate of teratoma formation in the transplanted animals; (ii) zero 
risk of teratoma formation and (iii) a transitional stage of the protocol were successfully 
identified (Brederlau & Correia et al., 2006). It was also concluded that in order to 
achieve a significant effect upon the behavior of the model animals, DA cell survival in 
the site of transplantation should be significantly improved. Taken together, we have 
suggested a concept of ‘window of opportunity’ characterized by zero risk of 
teratoma/tumor formation and reasonably high rate of hESC-derived DA neuron survival 
in the site of transplantation (Fig. 2).  
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Figure 2. A concept of “window of opportunity” in hESC-based therapy for PD.  
Dashed line: risk of teratoma formation; Dotted line: risk of non-teratoma tumor formation; Solid line: 

Yield of hESC-derived DA neurons (as estimated by TH staining); Dash-dotted line: NPC and DA neuron 
survival rate in transplantation; Shaded area: “window of opportunity” promising clinical benefits. 

 
There is a clear controversy between 1) the ability of hESC-derived DA neurons 

to withstand handling/transplantation procedures and survive in the site of transplantation 
and 2) the degree of their differentiation. A straightforward approach taken relied upon 
increasing the yield of hESC-derived DA neurons by supplementing the in vitro 
differentiation protocol with novel substantia nigra pars compacta-related factor 
(fibroblast growth factor 20; FGF20). Using it in combination with SDIA and basic 
fibroblast growth factor (bFGF) we were able to attain a balance of differentiation and 
proliferation processes (Figures 3-4).  
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Figure 3. Effect of bFGF/FGF-20 supplementation upon basic in vitro differentiation protocol (co-
culturing hESCs with PA6 stromal cells), 3 weeks, immunocytochemical analysis. (A, C) Beta-III-Tubulin 
(green) / Human Nuclei marker (red); (B, D) Tyrosine hydroxylase (green) / Human Nuclei marker (red). 

Images were recorded using (20x) objective. 
 

 
Figure 4. Effect of bFGF/FGF-20 supplementation on the basic in vitro differentiation protocol (co-

culturing hESCs with PA6 stromal cells). (A) Number of Nestin+ cells, (B) Beta-III-Tubulin+ cells and (C) 
Tyrosine hydroxylase+ cells / Human nuclei antigen marker+ cells after 3 weeks of co-culturing. bFGF (4 

ng/ml); bFGF (4 ng/ml) + FGF-20 (200 ng/ml). Asterisks denote:  (*), p<0.05; (**), p<0.01; (***), 
p<0.001. 

 
Moreover, an extensive multi-disciplinary approach had allowed us to highlight 

important biological mechanisms implemented by FGF20. Acting in a dose-dependant 
manner, it affects not only differentiation, but also proliferation of hESC-derived DA 
progenitors (Fig. 5). This finding is of great importance in the particular field of 
ESC/neuronal differentiation research. 
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Figure 5. Fibroblast growth factor 20 (FGF20) affects both differentiation and proliferation of hESC-

derived DA progenitors in a dose-dependant manner. Tubb, Hprt, Gapd – housekeeping genes; Oct3/4 and 
Nanog – markers of cell proliferation; Aldh1, Msx1, Th and En1 – markers of DA lineage commitment. 

 
To further widen the ‘window of opportunity’ by accelerating the differentiation 

process (and thus eliminating the contaminating fraction of residual undifferentiated 
hESCs) and to improve cell survival in the site of transplantation radically, we have 
suggested a novel concept: culturing transplantation-ready cells not in 2-D (cell 
monolayer) but in 3-D structures. Thus, the major stress to highly sensitive cells caused 
by enzymatic digestion, mechanical dissociation and prolonged off-incubator handling 
would be avoided. Additionally, axotomy (i.e., disruption of grown cellular processes) 
will be prevented. In addition to basic differentiation-promoting factors (including SDIA 
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and FGF20), a close cell-cell interaction within the individual 3-D structures is 
considered being a potent differentiation-driving factor itself, accelerating the protocol. 
Numerous experiments have proved that the selected cell system (the SA002 hESC line) 
can not withstand the enzymatical/mechanical dissociation essential for the uniform 3-D 
structure formation. It was therefore concluded that cells should be pre-
differentiated/committed toward a dopaminergic lineage prior to dissociation. We were 
able to derive a 2-stage protocol based on 1) hESC commitment to 
neuronal/dopaminergic progenitors by 16-17 day co-culturing with SDIA-releasing cells 
(PA6 cells) and exposure to basic fibroblast growth factor (bFGF/FGF2), 2) dissociation 
of cells (which are relatively insensitive in the intermediate stage) and 3) formation of 3-
D structures induced by constant agitation of the cell suspension inside a CO2 incubator 
and terminal differentiation (6-7 days) (Fig. 6).  

 
 

Figure 6. Principle of the 2-stage method suggested: co-exposure of hESCs to stromal-derived cell-
inducing activity (SDIA; PA6 cells) and growth factors for 16-17 days (Stage I) is followed by the 
formation and growth of TU’s for 6-7 days, further enriched with DA neurons and post-mitotic DA 
progenitors (Stage II) suitable for transplantation. Total length of the protocol = 16-17 + 6-7 days. 

 
A shaker/incubator system was established and we were able to adapt the 

suggested protocol, successfully yielding a population of 3-D structures (that were termed 
‘Transplantable Units’ (TUs). Those TUs are characterized by: 1) having the desired 
dimensions (the parameter that depends on the pre-settings like the concentration of the 
cell suspension and incubation length), 2) being relatively uniform and 3) containing a 
significant number of tyrosine hydroxylase (TH)-positive cells (a feature achieved by the 
continuous exposure of the forming/formed TUs to differentiation-promoting factors) 
(Fig. 7-10). 



 10

 
Figure 7. Stage II of differentiation protocol, Day 16+2. After Stage I (hESC/PA6 co-culturing for 16 

days), the committed cells are dissociated enzymatically and cultured in Petri dishes on a rotating shaker 
(60 rpm) with a supplement of PA6-conditioned medium (CNS, A,B) or in serum free (NS, C,D) conditions 
in presence (A,C) or absence (B,D) of FGF20 (100 pg/ml). Two days rotating culture (Day 16+2) contain 
heterogeneous  aggregates (TU formation) and few cells (contaminating PA6 cells) attached to the bottom 

of Nunc Petri dishes in all conditions. 
 
 

 
 

Figure 8. Stage II of differentiation protocol, Day 16+4. During the four days of rotating culture in serum-
free (NS) media, highly heterogeneous aggregates are formed in the presence (A,B) and absence (C,D) of 

FGF20. 
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Figure 9. Stage II of differentiation protocol, Day 16+4. During the four days of rotating culture in 

conditioned media, transplant units (TU’s) grow steadily in PA6 cells-conditioned media (CNS) in the 
presence (A,B) and absence (C,D) of FGF20. Note that re-plating TU’s (with ½ media exchange) leads to 

the purification of rotation culture system of contaminating cells (with PA6 cells being attached to the 
surface of the first (replaced) dish and dead cells washed away). 

 

 
 

Figure 10. Stage II of the differentiation protocol, Day 16+6. During the six days of rotating culture, more 
homogeneous TU’s are formed in PA6 cell-conditioned media (CNS, A,B); the size of TU’s is substantially 

larger in FGF20-supplemented culture conditions (A). No clear increase of TU size/number of TU’s formed 
in serum-free culture conditions (NS, C,D) over  the same time period. 
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Figure 11. Cellular composition of transplant units (TU’s) after 6 days of rotating culture (16+6 days 
total) supplemented with PA6 cell-conditioned media (CNS). Considerable numbers of cells in TU’s 

express the neural progenitor marker nestin (A,B, red), immature neuronal marker Beta-III-tubulin (C, 
green) and DA-ergic neuronal marker tyrosine hydroxylase (TH; A,B, red). 

 
After extensive characterization of TUs yielded by different protocols (i.e., with 

variations in the duration of Stage I and II, differentiation media, additives, etc.; Fig. 11), 
we have dedicated a significant effort to develop a practical technique for TU 
transplantation. We were able to effectively deliver the desired number of cells to the rat 
brain using a microsyringe with a custom-made needle. The latter was loaded with the 
desired number of TUs (containing an equivalent of ~100,000 cells, as estimated by 
dissociation and counting cell numbers of representative TUs under the microscope), and 
an ‘air lock’ concept was used to prevent untimely release of TUs from the syringe 
needle (Fig. 12). A set of 6-9 TUs could be efficiently delivered to the site of 
transplantation in a non-traumatic volume of 3.5-4 µl of buffer.  

 
Figure 12. Schematic drawing representing loading the transplant units (TU’s; count 5-6) into a needle of 
a Hamilton syringe (22 gauge, internal diameter = 0.41 mm) for a successful implantation. By using this 

method, we are able to transplant the required number of TU’s and achieve grafts with over 100,000 viable 
cells in total. Total volume of needle load is relatively small (<5 µl). 

 
A total of 32 animals (6-OHDA-lesioned hemiparkinsonian rats) were 

transplanted in three independent sessions. By the latest session, we were fully confident 
in TU harvest/handling/delivery techniques; moreover, TU handling time was shortened 
from 3 hrs to 20 min. Extensive characterization of graft sites (following sacrificing 
transplanted rats 2 days – 8 weeks post-surgery) had demonstrated a notable 
improvement in cell survival (Figs. 13-14). 
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Figure 13. Two weeks following transplantation of 5-6 TU’s to the rat striatum, 
a considerable number of grafted cells appear viable and retains a mature neuronal phenotype. HNuc, 

Human nuclear antigen marker (red); NeuN, neuron specific protein NeuN, a marker for mature neurons 
(green). 

 
 

 

TH HNuc Merge 

A B C

HNuc NeuN Merge 
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Figure 14. Eight weeks following transplantation of 5-6 TU’s to rat striatum, a limited number of grafted 
TH+ cells appear viable and retains a mature neuronal phenotype. HNuc, Human nuclear antigen marker 

(red); TH, tyrosine hydroxylase (green). 
 

Notably, none of the transplanted rats had developed teratoma. However, 2 of 32 
transplanted rats have developed non-teratoma tumors (histologically similar to 
schwannomas; Fig. 15), indicating the presence of not-totipotent, yet still proliferating 
cells in the TUs.  

 

 
Figure 15. Immunohistological characterization of graft 8 weeks following the transplantation of TU’s 
containing an equivalent of 100,000 cells. Non-teratoma tumor outgrowth is evident, histologically (HE 

staining) tumor resembles a schwannoma. 
 
A few transplanted animals were lost due to side effects of the surgery procedure 

itself (wound infection) or the immunosupression technique. Although we observed a 
trend of improved animal motor functions (as evaluated by periodic amphetamine-
induced rotation), it was not statistically significant. It is therefore clear that despite the 
major progress achieved, further work is essential to 1) further improve cell survival, 2) 
purify TU content off mitotic cells and 3) further perfect TU handling/surgical techniques 
and immunosupressing regimens. Additionally, the yield of TH-positive cells within TUs 
is expected to be improved by incorporating some adaptations to both Stage I and Stage 
II (addition of certain growth factors promoting dopaminergic differentiation). Taken 
together, after careful re-evaluations of the extensive experimentation performed over the 
course of the project, an updated protocol of hESCs in vitro differentiation was derived, 
providing an improved yield of TH+ neurons. The homogeneous population of TUs 
yielded from this protocol could be effectively handled and transplanted into the rat 
model of PD using the technique perfected in the previous transplantation experiments. 
We believe that improved cell survival will lead to more significant improvements in 
motor functions of the model animals, while zero risk of teratoma/non-teratoma tumors 
could be achieved.  
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Genetic characterization of hESC-derived cells on the various stages of the 
differentiation protocol is of great importance. Large-scale screening of the genetic 
profile of these cells, combined with extensive comparative analysis could provide 
invaluable information regarding the mechanisms of DA differentiation. To address this 
important goal, we have constructed and tested a unique custom microarray specifically 
designed for studies in the field of stem cell differentiation into neuronal/DA cells. The 
platform (NeuroStem Chip) includes over 1300 specific gene targets, related to the (i) 
“stemness”-related features of hESCs, (ii) processes of differentiation and development, 
and (iii) specific features of neuronal subpopulations, further supplemented with a vast 
number of controls (Table 1). 

 
Table 1. Selected categories of NeuroStem chip entries. 

 
Category Functional role Examples 

I. Stemness Recognized markers of stemness 
Candidate markers of stemness 
Germ cell markers 
Hematopoietic stem cell markers 
Mesenchymal stem cell marker 

Oct3/4, Nanog, Tdgf1 
Cpxm1, Hook1, Ddx21 
Rif1, Bnc1, Bnc2 
Hoxb4, Cdcp1, C1qr1 
Bmpr1a, Bmpr2, 
Cd49a 

II. Proliferation Proliferation markers 
Neural proliferation markers 

Ki67, Pcna, Myc 
Emx1, Gbx2 

III. Development Differentiation 
Neuronal differentiation 

Dopaminergic 
differentiation 
Neuronal maturation 
Neuronal process formation 
Axonal elongation and branching 

Lifr, Ebaf, Lyar 
Ren, Rai1, Neurod2 
Dlx1, Dlx2, Lmx1a 
Mecp2, Ebf3, Sox4 
Hmgb1, Rage 
Pi3, Map1b, Slit1 

IV. Neural 
markers 

Pan-neural markers 
Markers of dopaminergic neurons 
Markers of cholinergic neurons 
Markers of spinal neurons 
Glial markers 

Astrocyte markers 
Oligodendrocyte markers 

Gap43, Nfh, Eno2 
Th, Aadc, Dat 
Ngf 
Hoxc6 
S100β, Cd68 
Gfap, Tapa1 
Mag, Mobp, Omg 

V. Distinct 
markers 
 

Normal tissues 
Liver 
Pancreas 
Skeletal muscle 
Cardiac muscle 
Smooth muscle 
Endothelial cells 

Blood cell subtypes 
Cancer cells 

Pancreatic cancer 

 
Gata6, G6pd, Fabp1 
Tff3, Sst, Pax4 
Itga7, Dmd, Tnnt3 
Nkx2.5, Anf, Myhca 
Actg2, Cnn1, Sm22α 
Flt1, Vwf, Pecam1 
Cd4, Cd8, Cd19 
Maspin 
Kras2 
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Colon cancer 
Breast cancer 
Prostatic cancer 
Lung cancer 
Ovarian cancer 
Hodgkin’s lymphoma 

Mina53 
Klk7 
Hpn, Mat8 
Rab5a, Tp63 
Mgb2 
Ptp4a, Atf5, p21snft 

VI. Relevant 
groups 

Apoptosis-related 
Telomere-related 
Antioxidants 
Imprinted genes 
FZD group 
WNT group 
BMP group 
STAT group 
FGF group 
GDF group 
Caspases group 
Cyclins group 
Kruppel-like group 

p53, Psip1, Birc2 
Tert, Terf2, Rap1 
Sod1, Sod2, Gpx1 
Tseb3, Gnas1, Grb10 
Fzd1, Fzd3, Sfrp1 
Wnt1, Wnt7a, Wisp1 
Bmp1, Bmp2, Bambi 
Stat1, Stat3, Pias1 
Fgf1, Fgf2, Fgfr4 
Gdf2, Gdf3, Gdf9 
Casp1, Casp2, Hsp70 
Ccna1, Ccnc, Cdk1 
Klf2, Klf9, Znf184 

 
Using this unique platform, we have performed a comprehensive characterization 

of the initial hESC population (SA02 line) and cells committed towards DA lineage (16 
days of co-culturing with PA6 cells) (Anisimov et al., 2007). We have also used this 
platform to identify key factors responsible for the ability of human foreskin fibroblasts 
to perform their unique biological function of ‘feeder cells’, supporting growth and 
proliferation of hESCs. A limited group of gene targets was identified by straightforward 
analytical algorithms and was validated by the RT-PCR technique: those related to 
secretion processes and cell surface membrane. We believe that the most important 
factors of ‘feeder cell’ properties were pinpointed. This is important not only for basic 
stem cell biology, but also for practical application of hESC-based techniques. Transition 
to ‘feeder-free’ protocols would be essential in terms of decreasing the complexity of 
culturing protocols and eliminating the risk of contaminating harvested hESCs or hESC-
derived cells with fractions of mouse (and thus xenogenic) or non-hESC human cells. 

 
 

Key Research accomplishments in the project 
1. Refinement of the in vitro differentiation protocol resulting in a balance of 

proliferation and differentiation in the cultures and yielding 3-D structures 
(Transplantable Units, TUs) suitable for transplantation without further dissociation. 

2. Refinement of the technique allowing rapid handling and reliable intracerebral 
delivery of TUs in model animals; resulting in an improved cell survival. 

3. Identification of the substantia nigra pars compacta-specific factor Fibroblast 
growth factor 20 (FGF20) as a factor affecting both differentiation and proliferation of 
hESC-derived DA progenitors in a dose-dependant manner. 
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Presentations: 
 
S.V. Anisimov: 
S.V. Anisimov. NeuroStem custom microarray: a new tool of experimental stem cell 
research (invited speaker). Symposium of Lund Strategic Center for Stem Cell Biology 
and Cell Therapy, Lund University. Lund, Sweden. May 18, 2005. 
A.S. Correia, A. Brederlau, S.V. Anisimov, G. Paul, L. Roybon, P. Eriksson, P. Brundin, 
J.-Y. Li. Developing human embryonic stem cell-based therapy for Parkinson’s disease. 
Meeting of SRCSDARF-JDRF Joint Programme in Stem Cell Research. Sigtuna, 
Sweden. June 16-17, 2005. 
A.S. Correia, A. Brederlau, S.V. Anisimov, G. Paul, L. Roybon, P. Eriksson, P. Brundin, 
J.-Y. Li. Developing human embryonic stem cell-based therapy for Parkinsons disease. 
International Society for Stem Cell Research 3rd Annual Meeting. San Francisco, CA, 
USA. June 23-25, 2005. 
S.V. Anisimov. Application of microarray technology to experimental neurology (invited 
speaker). From Neuron to Neurology and Psychiatry. The Baltic Summer School. 
University of Copenhagen, The Panum Institute. Copenhagen, Denmark. August 14-26, 
2005. 
S.V. Anisimov. The search for novel sources of dopamine neurons suitable for 
transplantation in Parkinson’s disease (replacement speaker). 2nd European Science 
Foundation Functional Genomics Conference “Functional Genomics and Disease”. Oslo, 
Norway. September 6-10, 2005. 
S.V. Anisimov. Gene expression in neurodegenerative diseases (invited speaker, session 
chairman). NSR (Nervous System and Repair) and NCoE (Nordic Center of Excellence) 
Joint Symposium: Disease models in vivo and in vitro. Lund University, Lund, Sweden. 
September 21-24, 2005. 
S.V. Anisimov. Developing human embryonic stem cell-based system for cell 
replacement therapy in Parkinson’s disease (invited speaker). Swedish Research Council 
NeuroFortis (Strong Research Environment in Brain Damage and Repair) Annual 
Meeting. Isaberg, Sweden. January 11-12, 2006. 
S.V. Anisimov. Developing human embryonic stem cell-based system for cell 
replacement therapy in Parkinson’s disease (invited speaker). General Biology of stem 
cell systems. EuroSTELLS Meeting. Venice, Italy. March 19-21, 2006. 
P. Brundin, S.V. Anisimov. Possible cell sources for transplantation in stroke: human ES 
cells and adult neural stem cells (P.Brundin, S.V.Anisimov, invited speakers, joint 
presentation). Pre-clinical Evaluation of Stem Cell Therapy in Stroke (STEMS) kick-off 
meeting. Paris, France. December 4, 2006. 
 
 
Abstracts: 
N.S. Christophersen, S.V. Anisimov, B. Juliusson, J. Jørgensen, P. Brundin. Discovering 
dopaminergic differentiation-associated gene expression profile alterations in an 
immortalized human mesencephalic cell line using specialized custom microarray. 
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Conclusions 
 

Our own results suggest that a risk of teratoma formation inversely correlates with 
the duration of the in vitro differentiation protocol (Brederlau & Correia et al., 2006). 
While the yield of hESC-derived DA neurons is not a limiting factor of transplantation 
success anymore, the major problems associated with the actual application of hESC-
based therapies for PD are associated with 1) poor survival of mature DA neurons and 2) 
risk of teratoma and tumor formation in the site of transplantation. The former is caused 
by the presence of residual undifferentiated/mitotic cells amongst the transplanted cells. 
We have refined the in vitro differentiation protocol resulting in a balance of proliferation 
and differentiation in the cultures and yielding 3-D structures (Transplantable Units, TUs) 
suitable for transplantation without further dissociation. We have also refined the 
technique allowing rapid handling and reliable intracerebral delivery of TUs in model 
animals; resulting in an improved cell survival. Finally we have identified the substantia 
nigra pars compacta-specific factor Fibroblast growth factor 20 (FGF20) as a factor 
affecting both differentiation and proliferation of hESC-derived DA progenitors in a 
dose-dependant manner. 
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